A group action on multivariate polynomials over finite fields
نویسندگان
چکیده
منابع مشابه
Factoring Multivariate Polynomials over Finite Fields
We consider the deterministic complexity of the problem of polynomial factorization over finite fields given a finite field Fq and a polynomial h(x, y) ∈ Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible polynomials. This problem admits a randomized polynomial-time algorithm and no deterministic polynomial-time algorithm is known. In this chapter, we give a determ...
متن کاملFactoring Multivariate Polynomials over Large Finite Fields
A simple probabilistic algorithm is presented to find the irreducible factors of a bivariate polynomial over a large finite field. For a polynomial f(x, y) over F of total degree n , our algorithm takes at most 4.89, 2 , n log n log q operations in F to factor f(x , y) completely. This improves a probabilistic factorization algorithm of von zur Gathen and Kaltofen, which takes 0(n log n log q) ...
متن کاملOn the evaluation of multivariate polynomials over finite fields
We describe a method to evaluate multivariate polynomials over a finite field and discuss its multiplicative complexity.
متن کاملPolynomial-Time Factorization of Multivariate Polynomials over Finite Fields
We present a probabilistic algorithm that finds the irreducible factors of a bivariate polynomial with coefficients from a finite field in time polynomial in the input size, i.e. in the degree of the polynomial and log (cardinality of field). The algorithm generalizes to multivariate polynomials and has polynomial running time for densely encoded inputs. Also a deterministic version of the algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2018
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2018.01.011